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Abstract. The depinning transition of a front moving in a time-independent random potential is studied.
The temporal development of the overall roughness w(L, t) of an initially flat front, w(t) ∝ tβ , is the
classical means to have access to the dynamic exponent. However, in the case of front propagation in
quenched disorder via extremal dynamics, we show that the initial increase in front roughness implies an
extra dependence over the system size which comes from the fact that the activity is essentially localized
in a narrow region of space. We propose an analytic expression for the β exponent and confirm this for
different models (crack front propagation, Edwards-Wilkinson model in a quenched noise etc.).

PACS. 05.40.Fb Random walks and Levy flights – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems – 64.60.Ht Dynamic critical phenomena

The propagation of a front in a noisy environment has
been the subject of active research in the past. In partic-
ular, after Family and Vicsek proposed a scaling form for
the evolution of the roughness of fronts and surfaces from
Langevin equations, numerous analytical and numerical
works have verified these laws in a wide variety of models.
Various reviews cover this rich field [1–4].

More recently, the quenched (i.e. time-independent)
nature of the noise was recognised as playing a significant
role in front propagation. Unfortunately, in spite of a few
key works, analytic modelling of such a depinning tran-
sition is rather scarce: Dynamic Renormalization Group
studies have been proposed for the Edwards-Wilkinson
model with quenched disorder [5–7]. However in 1 + 1 di-
mensions some of the predicted exponents are quite far
from their numerically estimated values. It has been pro-
posed that the Kardar-Parisi-Zhang model in a quenched
environment can be described by a directed percolation re-
lated model, mostly on the basis of numerical agreement
between measured exponents [8,9].

Such models are relevant for a number of pinning phe-
nomena such as crack propagation [10–14], wetting phe-
nomena [15,16], vortex pinning in type-II superconduc-
tors [17] and solid friction [18,19].

Growth models in 1 + 1 dimensions are often studied
through the evolution in time θ, (defined as the number
of growth steps t divided by the system size L), of the
roughness, w(θ), of an initially flat front w(0) = 0. The
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roughness – standard deviation of the front – in a system
of size L obeys the scaling form

w(θ) = θβϕ

(
L

θ1/z1

)
(1)

where

ϕ(x) =

{
const. for x� 1

xζ for x� 1
(2)

and ζ = βz1. The exponent z1 is referred to as the dy-
namic exponent since it relates space and time, whereas ζ
describes the roughness of the front (Hurst or roughness
exponent), i.e. the scaling of the pair correlation function
for equal-time positions along the front. In most cases of
annealed noise, there is no need to introduce any other
exponents, since at late stages, when the overall rough-
ness has reached the saturation value, the full two point
correlation function of the front at different locations and
times reveals a similar scaling between space and time:
∆x ∝ ∆θ1/z1 [20].

The aim of this paper is to show that for a class of
quenched disorder depinning models, the early time devel-
opment of the roughness does not obey such a law. Rather,
it implies an extra L dependence in the expression of w,
from which ζ = βz1 is violated.

We focus more specifically on a class of models intro-
duced by Tanguy et al. [22] obeying extremal dynamics.
The front is defined by its position y = h(x, t). An external
driving F allows to exert a pressure on the front which is
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however biased by the position of the front, so that at each
site x, the force is f(x, t) = F · (G?h) where the ? denotes
a convolution product, and G is a function which is spe-
cific to the physical problem studied. The local part of G
is adjusted so that G(0) = −

∑
x 6=0G(x). In order to nor-

malize this kernel, we choose as a convention G(0) = −1.
The key feature is that G may have power-law tails which
determine the universality class of the problem. For a pla-
nar crack, Gao and Rice [14] have shown that (to first
order in h), G decays as r−2. The same holds for the mo-
tion of the triple line of a liquid-glass interface intersecting
a solid surface, in a wetting problem with a semi-infinite
liquid surface in weak gravity. If the liquid/gas system is
confined between two parallel plates the G function de-
cays more abruptly, as r−3. In the mean-field limit, the
G function does not depend on distance. For the sake of
convenience, this model has thus been generalized to any
power-law form for G:

G(r) ∝ r−α. (3)

In our simulations, periodic boundary conditions are im-
plemented and thus we adjust G to match such a period-
icity: namely G(r) ∝ sin(πr/L)−α. Such an expression is
exact for α = 2, and is a convenient means to implement
the periodic b.c. in other cases.

The environment is represented by quenched hetero-
geneities, η(x, y), which can block the front whenever
f(x, t) < η(x, h(x, t)). The η values are considered to
be uncorrelated, positive numbers, randomly picked from
a uniform distribution over the interval [0; 1]. Thus for
F = 0, the interface does not move. At each time step,
the force is increased slowly from 0 up to the level where
one site x∗ (the active site) can depin. This site jumps
to the next obstacle η at a random distance along the y
direction. This distance is chosen again from a uniform
distribution over the interval [0; d]. The external loading
is immediately brought back to zero so that no other sites
can move simultaneously. The same step is repeated in-
definitely. d is a free parameter. It has been checked that
d plays no role in the statistical properties of the model
in the steady state.

The steady state properties of this model have been
studied in detail numerically [21–23]. It has been shown
in particular that for α ≤ 1, the model is in the mean
field regime, as can be easily inferred from the α = 0 case.
No spatial structure appears, and the front is an uncor-
related white noise. For α ≥ 3, the long-range kernel is
dominated by the short wavelength cut-off, and is thus
equivalent to the case where G is the second derivative of
a Dirac distribution, i.e. the local force is proportional
to the external loading and the local curvature of the
front. This is the Edwards-Wilkinson or “Laplacian” case
with quenched disorder. The front has a “super-rough”
structure with a roughness exponent ζ ≈ 1.25 [24]. The
steady state properties of this dynamics is fairly rich and
a number of scaling properties can be observed for the
front structure, the time evolution of the activity, and of
the driving force necessary to depin the interface. In the
intermediate range 1 < α < 3, similar properties are

observed with scaling exponents which vary continuously
with α.

One especially interesting property can be studied in
order to characterize the spreading of activity in space and
time: let x∗(t0) be the active site at time t0, and x∗(t0+∆t)
at time t0 + ∆t. Note that here we use as a time the
total number of moves t rather than the number of moves
per site θ = t/L. We study the statistical distribution
p(∆x,∆t) of ∆x = |x∗(t0 + ∆t) − x∗(t0)| for a fixed ∆t.
It obeys the scaling form

p(∆x,∆t) = ∆t−1/z2 Ψ

(
∆x

∆t1/z2

)
(4)

where

Ψ(x) =

{
const. for x� 1

x−b for x� 1
(5)

where b is equal to α. Such a scaling form was first in-
troduced by Furuberg et al. studying invasion percola-
tion [25]. Thus, in the steady state, we see that the activ-
ity spreads typically over distances ∆x ∝ ∆t1/z2 . In this
sense, z2 is actually the “dynamic exponent”, and it in-
deed governs all correspondences between time and space
in the steady state. Note however that a different conven-
tion is now used for z, because of the definition of time.
In particular the activity has spread over the entire sys-
tem for a time equal to t ∝ Lz2 , hence θ = t/L ∝ Lz2−1.
Thus actually z2 should be compared to z1 + 1. In models
with extremal dynamics, z2 can easily be related to the
roughness exponent of the front [26,22]. After a time ∆t,
the activity remains localized in a region of extend ∆x.
Over this region, the front moves by a typical distance of
order ∆y ∝ ∆xζ . Thus the number of time steps required
to travel by this amount scales as ∆x∆y ∝ ∆x1+ζ , hence

z2 = 1 + ζ. (6)

This simple argument has been checked to be obeyed pre-
cisely in numerical simulations for 1 < α < 3. Let us
however note that it breaks down in the Laplacian case
α→∞ where z2 ≈ 2.0 and ζ ≈ 1.25. However, the situa-
tion when ζ > 1 is known to display some pathologies.

We now consider the early stages of the front growth.
We assign an initial flat configuration for the front y = 0
and study the evolution of the front roughness, in order to
characterize z1 through the scaling relation (1). Figure 1
shows a log-log plot of the overall roughness for the crack
model, α = 2, and for α = 3. In both cases, we indeed
measure a power-law, w ∝ tβ , with β ≈ 0.61 and 0.70
respectively. Table 1 gives the different values of ζ and z2

from reference [22], and β from the numerical simulations
of the present study. We note that if we blindly apply
the relation z1 = ζ/β, we find a severe discrepancy with
z2−1 which cannot be attributed to numerical uncertain-
ties. For instance, if α = 2, ζ/β = 0.58, and z2− 1 = 0.35.
Let us note that this observation invalidates the numerical
determination of the z exponent published for example in
references [5,6] (moreover, in these articles the analytical
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Table 1. Values of the exponents ζ and z2 taken from reference [21], measured value of β from the present work, and predicted
value from equation (10). ∗ refers to reference [23].

α ζ z2 β β

from Ref. [22] from Ref. [22] (measured) from Eq. (10)

1.5 0.05 1.05 0.49 0.52

2.0 0.35 1.35 0.61 0.63

2.5 0.65 1.65 0.65 0.70

3.0 1.0 2.0 0.70 0.75

∞ 1.25 2.0 0.8∗ 0.78
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Fig. 1. Log-log plot of the overall roughness of the interface
as a function of time for two values of the α parameter α = 2
(symbol ◦) and α = 3 (symbol •). The best power-law fits are
shown as plain lines. The values of the slopes are reported in
Table 1. The size of the system is L = 1024.

expression proposed for z1, using RG analysis, refers to
another driving mode that could be interesting to com-
pare with extremal models). This is the main message of
this paper: the standard relation z1 = ζ/β breaks down
for quenched disorder growth models with extremal dy-
namics.

We can go one step beyond the numerical study re-
ported so far and estimate the value of z1 from the steady
state roughness exponent. To this end, it is informative
to look at the shape of the front in the initial regime.
Figure 2 shows such an example for α = 2 and L = 1024.
We observe that the front remains pinned along its initial
flat geometry for a large time, and thus the interface moves
only in a confined region of space. This region progres-
sively grows, and invades the flat part, but still continues
its propagation along the y direction. This is in marked
contrast with annealed noise type growth where the ac-
tivity is delocalized along the entire front. Moreover, as
can be noted from Figure 1, the cross-over to the satura-
tion regime is quite steep. This suggests that the depinned
parts of the front have already reached their steady state
roughness.

Let us now translate this argument into quantitative
terms. We assume that the interface is depinned along
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Fig. 2. Shape of the early stages t = 1000, 6000 and 11 000 of
the interface for α = 2 and L = 1024. We note that the activity
is not equally distributed along the interface, but rather only
a localized part grows and reaches a steady state conformation
before growing and invading the flat region. This observation
expressed in quantitative terms gives our prediction of β.

one single interval of length `. Along this interval, the
roughness assumes its asymptotic value, i.e. the typical
height will be of order h ≈ `ζ . Therefore the time needed
to reach this position is

t ∝ `1+ζ . (7)

Generally, as one follows the time development of the
roughness, one introduces as a time the number of moves
per site, θ = t/L. Ignoring subdominant terms coming
from the average height of the interface, we compute the
overall roughness, w, as

w2 ∝ `2ζ+1

L
(8)

where the multiplicative `/L term comes from the weight
of the depinned part of the interface as compared to the
rest. Therefore the β exponent is readily estimated from
the elimination of ` in the two above equations, and thus

w ∝ θβLβ−1/2 (9)
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with

β =
ζ + 1/2
ζ + 1

· (10)

We note however that there is an extra term depending on
L in the rate of growth of the roughness. Thus one cannot
use the standard relation z1 = ζ/β. Instead, we write

w = θβLβ−1/2ϕ

(
L

θ1/z1

)
. (11)

The dynamic exponent z1 is then found by imposing that
in the steady state w is t-independent, and w ∝ Lζ . This
gives the power-law behavior of ϕ for small arguments,
ϕ(x) ∝ xζ+1/2−β , and thus

β − ζ + 1/2− β
z1

= 0 (12)

or using our above expression for β

z1 =
ζ + 1/2− β

β
= ζ. (13)

Thus the total number of moves necessary to reach the
steady state scales as t = θL ∝ L1+ζ , and thus we recover
our previous expression for z2 = 1+z1 where the difference
of one simply comes from the definition of time.

In Table 1, we have reported the value of the β expo-
nent estimated from numerical simulation data, and the
one obtained from equation (10). We note an excellent
numerical agreement for all values of α studied.

More generally if other moments of the interface height
are computed, a different scaling is expected. Indeed for
the moment of order m, a similar computation gives 〈(h−
〈h〉)m〉1/m ∝ tβm with

βm =
ζ + 1/m
ζ + 1

· (14)

Hence, in contrast with annealed models, different mo-
ments give rise to different estimates of the β exponent.
This again underlines the fact that care has to be taken
with the interpretation of the latter exponent. We note
that equation (14) has also been proposed [27,28] in the
context of another extremal model of interface depinning
where it has also been checked numerically in the steady
state [29]. However, in contrast to earlier works, where it
was conjectured that the Family-Vicsek scaling form holds
at early times but not in the steady state, we find that it
never applies.

We mentioned that the part of the interface which has
moved had already a conformation representative of the
steady state regime. In order to check this, we can per-
form the following test. After the interface has reached
the steady state, we choose an arbitrary time t0 and record
the position of the interface h0(x) = h(x, t0). Then as the
simulation continues, we study the incremental motion of
the front, ∆h(x, t) = h(x, t) − h0(x). The time evolution
of the roughness of ∆h follows indeed the same law as the
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Fig. 3. Log-log plot of the overall roughness versus time for
α = 2 and L = 1024. Three values of d are used as indicated
in the caption. The dotted line shows a slope of 0.5 which
accounts for the very early stages of growth when d is small.

early stage tβ. This shows that the initial flat configura-
tion behaves as any late stage configuration.

The final question to answer is why the activity is lo-
calized during the early stages of front propagation. As a
site moves, a large part of the forces it carries is transferred
to the nearest neighbours, while a smaller part is trans-
ferred to the second neighbours, and so on. The amount
of load transfer depends on the distance to the active site
as dictated by the kernel G of the model, and hence it
depends on α. For α→∞, the load transfer is local, and
only the nearest neighbors are influenced. The amplitude
of the change in force is by the definition of the model de-
pendent on the distance the active site advances, and thus
it depends on the parameter d. For large d, one may easily
understand that the activity has a tendency to move uni-
formly in the transverse direction. The first active site will
jump by a distance proportional to d, and hence its closest
neighbours will be pushed forward by such an amplitude
that the amplitude of the threshold strength may be insuf-
ficient to keep them pinned. In contrast, for small d, the
threshold distribution may win over the force modification
induced by the roughening of the front. As the amplitude
of d is reduced, indeed, the activity map shows that the
very initial stage is spread over the entire interface. In
the very early stages, one measures a temporal exponent
β ≈ 0.5 (also noticed in [28]) as can be expected from the
trivial observation that only a number t of sites move by
a single step proportional to d, thus w ∝ d · t1/2L−1/2.
After this initial transient, a higher slope takes over.
Figure 3 indicates the evolution of w(t) for three values of
d, 1.0, 0.1 and 0.01. Fitting the time region where on av-
erage there has been more than one move per site, t > L,
gives consistent estimates of β as mentioned in Table 1.
We thus conclude that the above description of the early
stage growth is the generic case, which is encountered for
any specific choice of the parameter d.

Let us conclude by briefly summarizing our results:
the time development of roughness in quenched disorder



S. Krishnamurthy et al.: Dynamic exponent in extremal models of pinning 153

depinning models implies a size dependence which has not
been noted before. This implies a violation of the scaling
relation ζ = zβ for all times. Instead, we show that the
activity is localized even in the early stages of growth and
thus this implies a power-law increase of the roughness in
time with the exponent β given in equation (10). This has
been confirmed through numerical simulations.

We acknowledge the hospitality of the International Center of
Theoretical Physics in Trieste (It.) where this work was com-
pleted. We are grateful to M. Paczuski for pointing out some
references we had missed.
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